NUCLEAR AND PARTICLE PHYSICS

GATE-2010

- Q1. The basic process underlying the neutron β -decay is
 - (a) $d \to u + e^- + v_e^-$

(b) $d \rightarrow u + e^{-}$

(c) $s \rightarrow u + e^- + \overline{v}_e$

(d) $u \rightarrow d + e^- + v_e^-$

Ans: (a)

- Q2. In the nuclear shell model the spin parity of ${}_{7}^{15}N$ is given by
 - (a) $\frac{1^{-}}{2}$
- (b) $\frac{1^{+}}{2}$
- (c) $\frac{3^{-}}{2}$
- (d) $\frac{3^{+}}{2}$

Ans: (a)

Solution: Z = 7; $(s_{1/2})^2 (p_{3/2})^4 (p_{1/2})^1$ and N = 8

$$l = 1$$
, $J = \frac{1}{2} \Rightarrow \text{parity} = (-1)^1 = -1$, spin - parity = $\left(\frac{1}{2}\right)^1$

- Q3. Match the reactions on the left with the associated interactions on the right.
 - $(1) \pi^+ \to \mu^+ + \nu_{\mu}$

(i) Strong

(2) $\pi^0 \rightarrow \gamma + \gamma$

(ii) Electromagnetic

 $(3) \pi^0 + n \rightarrow \pi^- + p$

- (iii) Weak
- (a) (1, iii), (2, ii), (3, i)
- (b) (1, i), (2, ii), (3, iii)
- (c) (1, ii), (2, i), (3, iii)
- (d) (1, iii), (2, i), (3, ii)

Ans: (a)

- Q4. The ground state wavefunction of deuteron is in a superposition of s and d states. Which of the following is NOT true as a consequence?
 - (a) It has a non-zero quadruple moment
 - (b) The neutron-proton potential is non-central
 - (c) The orbital wavefunction is not spherically symmetric
 - (d) The Hamiltonian does not conserve the total angular momentum

Ans: (d)

Institute for NET/JRF, GATE, IIT-JAM, M.Sc. Entrance, JEST, TIFR and GRE in Physics

The first three energy levels of $^{228}Th_{90}$ are shown below Q5.

The expected spin-parity and energy of the next level are given by

- (a) $(6^+; 400 \text{ keV})$
- (b) $(6^+; 300 \text{ keV})$ (c) $(2^+; 400 \text{ keV})$
- (d) $(4^+; 300 \text{ keV})$

Ans:

Solution: $\frac{E_2}{E_1} = \frac{J_2(J_2 + 1)}{J_1(J_1 + 1)} \Rightarrow \frac{E_6}{E_4} = \frac{6(6 + 1)}{4(4 + 1)} \Rightarrow E_6 = 393 \text{keV}$

GATE-2011

Q6. The semi-empirical mass formula for the binding energy of nucleus contains a surface correction term. This term depends on the mass number A of the nucleus as

- (a) $A^{-1/3}$
- (b) $A^{1/3}$
- (c) $A^{2/3}$
- (d) A

Ans: (c)

According to the single particles nuclear shell model, the spin-parity of the ground state Q7. of ${}^{17}_{8}O$ is

- (a) $\frac{1}{2}$

- (d) $\frac{5}{2}^{+}$

(d) Ans:

Solution: Z = 8 and N = 9; $(s_{1/2})^2 (p_{3/2})^4 (p_{1/2})^2 (d_{5/2})^1$

$$l = 2$$
, $J = \frac{5}{2} \Rightarrow \text{parity} = (-1)^2 = +1$, spin - parity = $\left(\frac{5}{2}\right)^+$

In the β -decay of neutron $n \rightarrow p + e^{-} + \overline{v}_{e}$, the anti-neutrino \overline{v}_{e} , escapes detection. Its Q8. existence is inferred from the measurement of

- (a) energy distribution of electrons
- (b) angular distribution of electrons
- (c) helicity distribution of electrons
- (d) forward-backward asymmetry of electrons

Ans: (a)

The isospin and the strangeness of Ω^- baryon are Q9.

- (a) 1, -3
- (b) 0.-3
- (c) 1, 3
- (d) 0, 3

Ans: (b)

Institute for NET/JRF, GATE, IIT-JAM, M.Sc. Entrance, JEST, TIFR and GRE in Physics

GATE-2012

- O10. Deuteron has only one bound state with spin parity 1⁺, isospin 0 and electric quadrupole moment 0.286 efm². These data suggest that the nuclear forces are having
 - (a) only spin and isospin dependence
 - (b) no spin dependence and no tensor components
 - (c) spin dependence but no tensor components
 - (d) spin dependence along with tensor components

Ans: (d)

The quark content of Σ^+, K^-, π^- and p is indicated: Q11.

$$|\Sigma^{+}\rangle = |uus\rangle; |K^{-}\rangle = |s\overline{u}\rangle; |\pi^{-}\rangle = |\overline{u}d\rangle; |p\rangle = |uud\rangle.$$

In the process, $\pi^- + p \rightarrow K^- + \Sigma^+$, considering strong interactions only, which of the following statements is true?

- (a) The process, is allowed because $\Delta S = 0$
- (b) The process is allowed because $\Delta I_3 = 0$
- (c) The process is not allowed because $\Delta S \neq 0$ and $\Delta I_3 \neq 0$
- (d) The process is not allowed because the baryon number is violated

Ans:

Solution:
$$\pi^- + p \rightarrow k^- + \sum_{i=1}^{n} k^i$$

Solution:
$$\pi^- + p \rightarrow k^- + \sum^+ S: 0 \qquad 0 \qquad -1 \qquad -1$$
 (not conserved)

$$I_3:$$
 -1 $+\frac{1}{2}$ $-\frac{1}{2}$ +1 (not conserved)

For strong interaction S and I_3 must conserve. Therefore this process is not allowed under strong interaction

- Q12. Which one of the following sets corresponds to fundamental particles?
 - (a) proton, electron and neutron
 - (b) proton, electron and photon
 - (c) electron, photon and neutrino
 - (d) quark, electron and meson

Ans: (a)

Institute for NET/JRF, GATE, IIT-JAM, M.Sc. Entrance, JEST, TIFR and GRE in Physics

- Q13. In case of a Geiger-Muller (GM) counter, which one of the following statement is CORRECT?
 - (a) Multiplication factor of the detector is of the order of 10^{10}
 - (b) Type of the particles detected can be identified
 - (c) Energy of the particles detected can be distinguished
 - (d) Operating voltage of the detector is few tens of Volts

Ans: (c)

- Q14. Choose the CORRECT statement from the following
 - (a) Neutron interacts through electromagnetic interaction
 - (b) Electron does not interact through weak interaction
 - (c) Neutrino interacts through weak and electromagnetic interaction
 - (d) Quark interacts through strong interaction but not through weak interaction

Ans: (d)

GATE-2013

- Q15. The decay process $n \to p^+ + e^- + \overline{\nu}_a$ violates
 - (a) Baryon number
- (b) lepton number
- (c) isospin
- (d) strangeness

Ans: (c)

- Q16. The isospin (I) and baryon number (B) of the up quark is
 - (a) I = 1, B = 1

(b) I = 1, B = 1/3

(c) I = 1/2, B = 1

(d) I = 1/2, B = 1/3

Ans: (d)

- Q17. In the β decay process, the transition $2^+ \rightarrow 3^+$, is
 - (a) allowed both by Fermi and Gamow-Teller selection rule
 - (b) allowed by Fermi and but not by Gamow-Teller selection rule
 - (c) not allowed by Fermi but allowed by Gamow-Teller selection rule
 - (d) not allowed both by Fermi and Gamow-Teller selection rule

Ans: (c)

Solution: According to Fermi Selection Rule:

Institute for NET/JRF, GATE, IIT-JAM, M.Sc. Entrance, JEST, TIFR and GRE in Physics

$$\Delta I = 0$$
, $Parity = No Change$

According to Gammow-Teller Selection Rule:

$$\Delta I = 0,\pm 1,$$
 Parity = No Change

In the β decay process, the transition $2^+ \rightarrow 3^+$,

 $\Delta I = \pm 1$, Parity = No Change.

GATE-2014

- Q18. Which one of the following is a fermions'?
 - (a) α -particle

(b) $_4Be^7$ nucleus

(c) Hydrogen atom

(d) deuteron

Ans: (b)

Solution: If a nucleus contains odd number of nucleons, it is fermions. If a nucleus contains even number of nucleons, it is a boson.

- Q19. Which one of the following three-quark states (qqq) denoted by X CANNOT be a possible baryon? The corresponding electric charge is indicated in the superscript.
 - (a) X^{++}
- (b) X⁺
- $(c)X^{-}$
- (d) X^{--}

Ans: (d)

Solution: X = qqq

 $X^{++}(uuu)\frac{2}{3} + \frac{2}{3} + \frac{2}{3} = \frac{6}{3} = 2$ (two unit positive charge)

 $X^+ (uud) \frac{2}{3} + \frac{2}{3} - \frac{1}{3} = \frac{4}{3} - \frac{1}{3} = 1$ (single unit positive charge)

 $X^{-}(ddd) = -\frac{1}{3} - \frac{1}{3} - \frac{1}{3} = -1$ (single unit negative charge)

 X^{-} [Not possible with qqq]. So the correct option is (d)

Q20. Consider the process $\mu^+ + \mu \to \pi^+ + \pi^-$. The minimum kinetic energy of the muons (μ) in the centre of mass frame required to produce the pion (π) pairs at rest is \underline{MeV} .

Ans: 81.7

Institute for NET/JRF, GATE, IIT-JAM, M.Sc. Entrance, JEST, TIFR and GRE in Physics

Solution: Use conservation of energy and momentum in relativistic form.

$$m_{\mu} = 105 \; MeV/c^2 \quad and \quad m_{\pi} = 140 \; MeV/c^2$$

$$E_{\mu} = \frac{\left(m_{\pi^{+}} + m_{\pi^{-}}\right)^{2} c^{2} - \left(m_{\mu^{+}} + m_{\mu}\right)^{2} c^{2}}{2m_{\mu}} \Rightarrow E_{\mu} = \frac{\left(280\right)^{2} MeV - \left(210\right)^{2} MeV}{2 \times 105} = 163.3 \ MeV$$

For pair it will be $\frac{163.3}{2} MeV = 81.7 MeV$

- A nucleus X undergoes a first forbidden β -decay to nucleus Y. If the angular Q21. momentum (I) and parity (P), denoted by I^P as $\frac{7}{2}$ for X, which of the following is a possible I^P value for Y?
 - (a) $\frac{1^{+}}{2}$
- (b) $\frac{1^{-}}{2}$ (c) $\frac{3^{+}}{2}$

Ans:

Solution: For first forbidden β -decay; $\Delta I = 0.1$ or 2 and Parity does change.

GATE-2015

- The decay $\mu^+ \rightarrow e^+ + \gamma$ is forbidden, because it violates Q22.
 - (a) momentum and lepton number conservations
 - (b) baryon and lepton number conservations
 - (c) angular momentum conservation
 - (d) lepton number conservation

Ans.: (d)

 $\mu^+ \rightarrow e^+ + \gamma$. In this decay lepton number is not conserved. Solution:

A beam of X - ray of intensity I_0 is incident normally on a metal sheet of thickness 2 mm. The intensity of the transmitted beam is $0.025 I_0$. The linear absorption coefficient of the metal sheet $(in \ m^{-1})$ is _____ (upto one decimal place)

1844.4 Ans.:

Solution:
$$I = I_0 e^{-\mu x} \Rightarrow \mu = \frac{1}{x} \ln \left(\frac{I_0}{I} \right) = \frac{1}{2 \times 10^{-3}} \ln \left(\frac{I_0}{0.025 I_0} \right) = \frac{1}{2 \times 10^{-3}} \ln \left(40 \right)$$

$$\Rightarrow \mu = \frac{2.303}{2 \times 10^{-3}} \left[\log_{10} 40 \right] = 1.151 \times 10^{3} \left[2 \times 0.3010 + 1 \right] = 1844.4 \ m^{-1}$$

Institute for NET/JRF, GATE, IIT-JAM, M.Sc. Entrance, JEST, TIFR and GRE in Physics

The mean kinetic energy of a nucleon in a nucleus of atomic weight A varies as A^n , (upto two decimal places)

Ans.: -0.67

Solution:
$$\langle T \rangle = \frac{\int_0^R -\frac{\hbar^2}{2m} \left(\frac{d^2}{dr^2} + \frac{1}{r} \frac{d}{dr}\right) 4\pi r^2 dr}{\int_0^R 4\pi r^2 dr} = \frac{-\frac{\hbar^2}{2m} 4\pi \int_0^R (2+2) dr}{\int_0^R 4\pi r^2 dr} = \frac{-\frac{\hbar^2}{2m} 4\pi \times 4R}{4\pi R^3 / 3}$$
$$\Rightarrow \langle T \rangle \propto \frac{1}{R^2} = \frac{1}{\left(R_0 A^{\frac{1}{3}}\right)^2} = \frac{1}{A^{\frac{2}{3}}} = A^{-\frac{2}{3}} \Rightarrow n = -\frac{2}{3} = -0.667 = -0.67$$

The atomic masses of ${}_{63}^{152}Eu$, ${}_{62}^{152}Sm$, ${}_{1}^{1}H$ and neutron are 151.921749, 151.919756, Q25. 1.007825 and 1.008665 in atomic mass units (amu), respectively. Using the above information, the Q- value of the reaction $_{63}^{152}Eu + n \rightarrow_{62}^{152}Sm + p$ is ______ $\times 10^{-3}$ amu (upto three decimal places)

2.833 Ans.:

Solution: $Q = 152.930414 - (152.927581) = 2.833 \times 10^{-3} a.m.u.$

In the nuclear shell model, the potential is modeled as $V(r) = \frac{1}{2}m\omega^2 r^2 - \lambda \vec{L} \cdot \vec{S}$, $\lambda > 0$. Q26. The correct spin-parity and isospin assignments for the ground state of ${}_{6}^{13}C$ is

(a)
$$\frac{1}{2}$$
; $\frac{-1}{2}$

(b)
$$\frac{1^+}{2}$$
; $\frac{-1}{2}$

(c)
$$\frac{3^+}{2}$$
; $\frac{1}{2}$

(a)
$$\frac{1^{-}}{2}$$
; $\frac{-1}{2}$ (b) $\frac{1^{+}}{2}$; $\frac{-1}{2}$ (c) $\frac{3^{+}}{2}$; $\frac{1}{2}$ (d) $\frac{3^{-}}{2}$; $\frac{-1}{2}$

Ans.: (a)

Solution:
$${}^{13}C_6$$
, $N = 7, Z = 6$, for $N = 7$; $\left(1S_{\frac{1}{2}}\right)^2 \left(1P_{\frac{3}{2}}\right)^4 \left(P_{\frac{1}{2}}\right)^1 \Rightarrow j = \frac{1}{2}$ and $l = 1$

Thus spin- parity is $\left(\frac{1}{2}\right)$.

Institute for NET/JRF, GATE, IIT-JAM, M.Sc. Entrance, JEST, TIFR and GRE in Physics

GATE-2016

- In the SU(3) quark model, the triplet of mesons (π^+, π^0, π^-) has O27.
 - (a) Isospin = 0, Strangeness = 0
- (b) Isospin = 1, Strangeness = 0
- (c) Isospin = $\frac{1}{2}$, Strangeness = +1 (d) Isospin = $\frac{1}{2}$, Strangeness = -1

Ans.: (b)

Solution: π^+, π^0, π^- are not strange particle thus strangness = 0

Since meson group contain 3 particles, thus I = 1

- Consider the reaction $^{54}_{25}Mn + e^- \rightarrow ^{54}_{24}Cr + X$. The particle X is Q28.
 - (a) γ

- (b) ν_a
- (c) n

(d) π^0

(b) Ans.:

- Q29. Which of the following statements is NOT correct?
 - (a) A deuteron can be disintegrated by irradiating it with gamma rays of energy 4 MeV.
 - (b) A deuteron has no excited states.
 - (c) A deuteron has no electric quadrupole moment.
 - (d) The ${}^{1}S_{0}$ state of deuteron cannot be formed.

Ans.:

- According to the nuclear shell model, the respective ground state spin-parity values of Q30. $^{15}_{8}O$ and $^{17}_{8}O$ nuclei are

 - (a) $\frac{1^+}{2}, \frac{1}{2}$ (b) $\frac{1}{2}^-, \frac{5^+}{2}$ (c) $\frac{3^-}{2}, \frac{5^+}{2}$ (d) $\frac{3^-}{2}, \frac{1^-}{2}$

Ans.: (b)

Solution: ${}_{8}^{15}O$; Z=8 and N=7; $N=7: (s_{1/2})^2 (p_{3/2})^4 (p_{1/2})^1$

$$\Rightarrow j = \frac{1}{2}$$
 and $l = 1$. Thus spin and parity $= \left(\frac{1}{2}\right)^{-1}$

$$_{8}^{17}O$$
; $Z = 8$ and $N = 9$; $N = 9 : (s_{1/2})^{2} (p_{3/2})^{4} (p_{1/2})^{2} (d_{5/2})^{1}$

$$\Rightarrow j = \frac{5}{2}$$
 and $l = 2$. Thus spin and parity $= \left(\frac{5}{2}\right)^{+}$

Institute for NET/JRF, GATE, IIT-JAM, M.Sc. Entrance, JEST, TIFR and GRE in Physics

GATE-2017

- Which one of the following conservation laws is violated in the decay $\tau^+ \to \mu^+ \mu^+ \mu^-$ Q31.
 - (a) Angular momentum

(b) Total Lepton number

(c) Electric charge

(d) Tau number

Ans. : (d)

Solution:

$$\tau^{\scriptscriptstyle +} \rightarrow \mu^{\scriptscriptstyle +} + \mu^{\scriptscriptstyle +} + \mu^{\scriptscriptstyle -}$$

$$a = \pm 1$$

$$q = +1$$
 $+1$ $+1$ -1 conserved

$$L = +$$

$$L = +1$$
 +1 +1 -1 conserved

$$L_{\tau} = +$$

$$L_{\tau} = +1$$
 0 0 Not conserved

spin =
$$\frac{1}{2}$$

spin =
$$\frac{1}{2}$$
 $\frac{1}{2}$ $\frac{1}{2}$ conserved

Tau number is not conserved

- Electromagnetic interactions are: Q32.
 - (a) C conserving
 - (b) C non-conserving but CP conserving
 - (c) CP non-conserving but CPT conserving
 - (d) CPT non-conserving

Ans.: (a)

Solution: In electromagnetic interaction C is conserved

CPT: Conserved in all interaction

CP: Conserved in EM and Strong interactions

$$E_n = \frac{-13.6}{n^2} (eV)$$

For n = 1, $E_1 = -13.6 \text{ eV}$ Ground state

For $n = \infty$, $E_{\infty} = 0$ Highest state

Thus, correct option is (a)

- In the nuclear reaction ${}^{13}C_6 + \nu_e \rightarrow {}^{13}N_7 + X$, the particle X is Q33.
 - (a) an electron

(b) an anti-electron

(c) a muon

(d) a pion

Ans.:

Institute for NET/JRF, GATE, IIT-JAM, M.Sc. Entrance, JEST, TIFR and GRE in Physics

Solution:
$$^{13}C_6 + \nu_e \rightarrow ^{13}N_7 + X \Rightarrow ^{13}C_6 \rightarrow ^{13}N_7 + X + \overline{\nu}_e$$

$$L_e = 0 \qquad 0 \quad +1 \quad -1$$

To conserve the Lepton number L_e , X should be e^-

- J^P for the ground state of the $^{13}C_6$ nucleus is Q34.
 - (a) 1^+
- (b) $\frac{3^{-}}{2}$ (c) $\frac{3^{+}}{2}$
- (d) $\frac{1}{2}$

Ans. : (d)

Solution:
$${}^{13}C_6$$
: $Z = 6$, $N = 7$, $N = 7$: $(s_{1/2})^2 (p_{3/2})^4 (p_{1/2})^1$
 $\Rightarrow j = \frac{1}{2}$ and $l = 1$. Thus spin and parity $= (\frac{1}{2})^{-1}$

The π^+ decays at rest to μ^+ and ν_μ . Assuming the neutrino to be massless, the Q35. $(m_{\pi} = 139 \, MeV / c^2, m_{\mu} = 105 \, MeV / c^2)$

Ans.: 29.84

Solution:
$$E_v = \frac{\left(m_\pi^2 - m_\mu^2\right)c^2}{2m_\pi} = p \times c$$

So
$$p = \frac{\left(m_{\pi}^2 - m_{\mu}^2\right)c}{2m_{\pi}} = \frac{19321 - 11025}{2 \times 139c} = \frac{29.84}{c} (MeV)$$

Institute for NET/JRF, GATE, IIT-JAM, M.Sc. Entrance, JEST, TIFR and GRE in Physics

GATE-2018

The elementary particle Ξ^0 is placed in the baryon decuplet, shown below, at O36.

- (a) *P*
- (b) Q
- (c) R

(d) S

Ans.: (c)

In the decay, $\mu^+ \rightarrow e^+ + \nu_e + X$, what is X? Q37.

(a) γ

- (c) v_{μ}
- (d) $\overline{\nu}_{u}$

Ans.: (d)

Solution:-

$$u^+ \rightarrow e^+ + v_e + \overline{v}_e$$

$$L_u: -1 0 0 -1$$

 $L_e: 0 -1 +1 0$

Q38. For nucleus ^{164}Er , a $J^{\pi}=2^{+}$ state is at 90 keV. Assuming ^{164}Er to be a rigid rotor, the energy of its 4⁺ state is _____ keV (up to one decimal place)

Ans.: 300

Solution: $E_J = hcBJ(J+1)$

 $E_{2^{+}} = hc \ B \ 2(2+1) \text{ and } E_{4^{+}} = hc \ B \ 4(4+1)$

Then, $\frac{E_{4^+}}{E_{2^+}} = \frac{20}{6} \implies E_{4^+} = \frac{20}{6} \times 90 \ keV = 300 \ keV$

Institute for NET/JRF, GATE, IIT-JAM, M.Sc. Entrance, JEST, TIFR and GRE in Physics

Q39. Inside a large nucleus, a nucleon with mass $939 \, MeVc^{-2}$ has Fermi momentum 1.40 fm⁻¹ at absolute zero temperature. Its velocity is Xc, where the value of X is _____ (up to two decimal places).

$$(\hbar c = 197 \, MeV - fm)$$

Ans.: 0.29

Solution: Here, fermi – momentum or fermi radius, $k_F = 1.40 \, fm^{-1}$ and $\hbar c = 197 \, \text{MeV} - \text{fm}$ Now, Fermi velocity –

$$V_F = \frac{P}{m} = \frac{\hbar k_F}{m} = \frac{(\hbar c) k_F \cdot c}{m c_2} = \frac{(197) \times 1 \cdot 40 \times c}{939} = \frac{275 \cdot 8c}{939} = 0.29c$$

$$(\frac{e^2}{4\pi \in 0} = 1.44 \,\text{MeV-fm}, \, r_0 = 1.30 \,\text{fm})$$

Ans.: 25.995

Solution: The height of coulomb barrier for α particle from

$$_{90}Th^{230} \rightarrow_{88} X^{226} + 2He^4 (\alpha - particle)$$

$$V_C = \frac{1}{4\pi \in \left(\frac{2ze^2}{R}\right)}$$

Here,
$$R_0 = 1.3 \text{ fm}$$
, $\frac{e^2}{4\pi \in R_0} = 1.44 \text{ MeV fm}$

And
$$R = R_0 A^{1/3}$$

Here, we consider pure Coulombic interection

$$A_{Th}^{1/3} = A_X^{1/3} + A_{\alpha}^{1/3} = (226)^{1/3} + (4)^{1/3} = (6.09 + 1.58) = 7.67$$

$$R = R_0 A_{Th}^{1/3} = 1.3(7.67)$$

Hence,
$$V_C = \left(\frac{e^2}{4\pi \in \Omega}\right) \frac{2 \times 90}{1.3(7.67)} = \frac{180 \times 1.44}{1.3 \times 7.67} \frac{MeV}{fm}$$

$$V_C = 25.995 \; MeV$$

Institute for NET/JRF, GATE, IIT-JAM, M.Sc. Entrance, JEST, TIFR and GRE in Physics

GATE-2019

- Considering baryon number and lepton number conservation laws, which of the O41. following process is/are allowed?
 - (i) $p \to \pi^0 + e^+ + v_a$
 - $(ii) e^+ + v_e \rightarrow \mu^+ + v_\mu$
 - (a) both (i) and (ii) (b) only (i)
- (c) only (ii)
- (d) neither (i) nor (ii)

Ans. : (c)

Solution: (i) $P \rightarrow \pi^0 + e^+ + \nu_a$

 $B:+1 \quad 0 \quad 0 \quad 0:$ Not conserved

Therefore, this is not an allowed process

- (ii)
- +1 0 : conserved +1 q:
- *spin*: 1/2 1/21/2 1/2: conserved
- L_{e} : -1 +10 0: conserved
- L_{u} : -1 +1: conserved 0 0

Since neutrino is involve, therefore parity is violated. This is allowed through weak interaction

- A massive particle X in free space decays spontaneously into two photons. Which of the Q42. following statements is true for X?
 - (a) X is charged
 - (b) Spin of X must be greater than or equal to 2
 - (c) X is a boson
 - (d) X must be a baryon

Ans.: (c)

Solution: $X \rightarrow r + r$

> 0 0 0 q:

spin: 0,1,2 1 1

Thus spin of X can be either 0,1 or 2. (integer)

Therefore, option (b) is wrong while option (c) is correct.

Institute for NET/JRF, GATE, IIT-JAM, M.Sc. Entrance, JEST, TIFR and GRE in Physics

The nuclear spin and parity of $^{40}_{20}Ca$ in its ground state is

	(a) 0 ⁺	(b) 0 ⁻	(c) 1 ⁺	(d) 1 ⁻
Ans.:	(a)			
Solution: ${}^{40}_{20}Ca$ is an even-even nuclei, therefore $I=0, P=+ve$				
	$\therefore Spin-parity = 0^+$			
Q44.	Low energy collision (s - wave scattering) of pion (π^+) with deuteron (d) results in the			
	production of two proton $(\pi^+ + d \rightarrow p + p)$. The relative orbital angular momentum (in			
	units of \hbar) of the resulting two-proton system for this reaction is			
	(a) 0	(b) 1	(c) 2	(d) 3
Ans.:	(b)			
Solution: $\pi^+ + d \rightarrow p + p$ Parity: $(-1) \times (+1) (-1)^l \pi_p \pi_p$				
	Parity: $(-1)\times(+1)$	$(-1)^l \pi_p \pi_p$		
	$\therefore (-1)^l \pi_p \pi_p = -1$			
	Since $\pi_p = +1$ $\therefore (-1)^l = -1$			
	Thus, $l = 1$.			
Q45.	A radioactive element X has a half-life of 30 hours. It decays via alpha, beta and			
	gamma emissions with the branching ratio for beta decay being 0.75. The partial half-life			
	for beta decay in unit of hours is			
Ans.:	40			
Solution: Branching ratio is the fraction of particles (here β) which decays by an individual				
	decay mode with respect to the total number of particles which decays			
$BR = \frac{\left(\frac{dN}{dt}\right)_{x}}{\left(\frac{dt}{dt}\right)_{\beta}} = \frac{\left(T_{1/2}\right)_{x}}{\left(T_{1/2}\right)_{\beta}} \Rightarrow \left(T_{1/2}\right)_{\beta} = \frac{\left(T_{1/2}\right)_{x}}{BR} = \frac{30}{0.75} = 40 \text{ hours}$				

Website: www.physicsbyfiziks.com | Email: fiziks.physics@gmail.com